9 Higher Auslander Algebras Admitting Trivial Maximal Orthogonal Subcategories

نویسندگان

  • Zhaoyong Huang
  • Xiaojin Zhang
چکیده

For an Artinian (n− 1)-Auslander algebra Λ with global dimension n(≥ 2), we show that if Λ admits a trivial maximal (n − 1)-orthogonal subcategory of modΛ, then Λ is a Nakayama algebra and the projective or injective dimension of any indecomposable module in modΛ is at most n− 1. As a result, for an Artinian Auslander algebra with global dimension 2, if Λ admits a trivial maximal 1-orthogonal subcategory of modΛ, then Λ is a tilted algebra of finite representation type. Further, for a finite-dimensional algebra Λ over an algebraically closed field K, we show that Λ is a basic and connected (n − 1)-Auslander algebra Λ with global dimension n(≥ 2) admitting a trivial maximal (n− 1)-orthogonal subcategory of modΛ if and only if Λ is given by the quiver: 1 2 β1 oo 3 β2 oo · · · β3 oo n+ 1 βn oo modulo the ideal generated by {βiβi+1|1 ≤ i ≤ n − 1}. As a consequence, we get that a finite-dimensional algebra over an algebraically closed field K is an (n− 1)-Auslander algebra with global dimension n(≥ 2) admitting a trivial maximal (n − 1)-orthogonal subcategory if and only if it is a finite direct product of K and Λ as above. Moreover, we give some necessary condition for an Artinian Auslander algebra admitting a non-trivial maximal 1-orthogonal subcategory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher Auslander algebras admitting trivial maximal orthogonal subcategories

For an Artinian (n− 1)-Auslander algebra Λ with global dimension n(≥ 2), we show that if Λ admits a trivial maximal (n − 1)-orthogonal subcategory of modΛ, then Λ is a Nakayama algebra. Further, for a finite-dimensional algebra Λ over an algebraically closed field K, we show that Λ is a basic and connected (n−1)-Auslander algebra Λ with global dimension n(≥ 2) admitting a trivial maximal (n− 1)...

متن کامل

Higher dimensional Auslander-Reiten theory on maximal orthogonal subcategories

We introduce the concept of maximal orthogonal subcategories over artin algebras and orders, and develop higher Auslander-Reiten theory on them. Auslander-Reiten theory, especially the concept of almost split sequences and their existence theorem, is fundamental to study categories which appear in representation theory, for example, modules over artin algebras [ARS][GR][Ri], their functorially ...

متن کامل

Higher Auslander-Reiten theory on maximal orthogonal subcategories

We introduce the concept of maximal orthogonal subcategories over artin algebras and orders, and develop higher Auslander-Reiten theory on them. Auslander-Reiten theory, especially the concept of almost split sequences and their existence theorem, is fundamental to study categories which appear in representation theory, for example, modules over artin algebras [ARS][GR][Ri], their functorially ...

متن کامل

4 M ar 2 00 9 The Existence of Maximal n - Orthogonal Subcategories ∗ †

For an (n− 1)-Auslander algebra Λ with global dimension n, we give some necessary conditions for Λ admitting a maximal (n − 1)-orthogonal subcategory in terms of the properties of simple Λ-modules with projective dimension n − 1 or n. For an almost hereditary algebra Λ with global dimension 2, we prove that Λ admits a maximal 1orthogonal subcategory if and only if for any non-projective indecom...

متن کامل

Ju n 20 09 Trivial Maximal 1 - Orthogonal Subcategories For Auslander ’ s 1 - Gorenstein Algebras

Let Λ be an Auslander’s 1-Gorenstein Artinian algebra with global dimension two. If Λ admits a trivial maximal 1-orthogonal subcategory of modΛ, then for any indecomposable module M ∈ modΛ, we have that the projective dimension of M is equal to one if and only if so is its injective dimension and that M is injective if the projective dimension of M is equal to two. In this case, we further get ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009